

PROGRAMMING IN JAVA

UNIT-3

Exception:

an exception is an event that disrupts the normal flow of the program. It is an object which is

thrown at runtime.

Exception Handling:

Exception Handling is a mechanism to handle runtime errors such as ClassNotFoundException,

IOException, SQLException, RemoteException, etc.

The core advantage of exception handling is to maintain the normal flow of the application.

Types of Java Exceptions
There are mainly two types of exceptions: checked and unchecked. An error is considered as the

unchecked exception. However, according to Oracle, there are three types of exceptions namely:

1. Checked Exception

2. Unchecked Exception

3. Error

1. Checked Exception
The classes that directly inherit the Throwable class except RuntimeException and Error are

known as checked exceptions. For example, IOException, SQLException, etc. Checked exceptions

are checked at compile-time.

2. Unchecked Exception
The classes that inherit the RuntimeException are known as unchecked exceptions. For example,

ArithmeticException, NullPointerException, ArrayIndexOutOfBoundsException, etc. Unchecked

exceptions are not checked at compile-time, but they are checked at runtime.

3. Error
Error is irrecoverable. Some examples of errors are OutOfMemoryError, VirtualMachineError,

AssertionError etc.

Java Exception Keywords:
Java provides five keywords that are used to handle the exception.

1. Try:

The "try" keyword is used to specify a block where we should place an exception code. It means

we can't use try block alone. The try block must be followed by either catch or finally.

Syntax:

try{

//statements that may cause an exception

}

2. Catch:

The "catch" block is used to handle the exception. It must be preceded by try block which means

we can't use catch block alone. It can be followed by finally block later.

Syntax:

try

{

 //statements that may cause an exception

}

 catch (exception(type) e(object))

 {

 //error handling code

}

3. Finally:

The "finally" block is used to execute the necessary code of the program. It is executed whether

an exception is handled or not.

Syntax:

try {

//Statements that may cause an exception

}

catch {

//Handling exception

}

finally {

//Statements to be executed

}

4. Throw:

The "throw" keyword is used to throw an exception.

Syntax:

throw ThrowableInstance

5. Throws:

The "throws" keyword is used to declare exceptions. It specifies that there may occur an

exception in the method. It doesn't throw an exception. It is always used with method signature.

Syntax:

type method_name(parameter_list) throws exception_list

{

 //definition of method

}

Java Exception Handling Example
Let's see an example of Java Exception Handling in which we are using a try-catch statement to

handle the exception.

JavaExceptionExample.java

1. public class JavaExceptionExample{
2. public static void main(String args[]){
3. try{
4. //code that may raise exception
5. int data=100/0;
6. }catch(ArithmeticException e){System.out.println(e);}
7. //rest code of the program
8. System.out.println("rest of the code...");
9. }
10. }

Output:

Exception in thread main java.lang.ArithmeticException:/ by zero

rest of the code...

Arithmetic Exception:
The arithmetic exception is a type of unusual outcome or unchecked error of the code, which is

thrown or raised whenever a wrong mathematical or arithmetic operation appears in the code

during run time. A runtime issue, also called an exception, appears whenever the denominator

of a fraction is 0, and the JVM is not able to find out the result; hence the program execution is

terminated, and an exception is raised. Note that at the point where the exception has been

raised, the program terminates. However, the code earlier than that is executed, and the

appropriate result is displayed.

Arithmetic Exception Structure
The arithmetic exception base class is java.lang.ArithmeticException, which is the child class of

java.lang.RuntimeException, which in turn is the child class of java.lang.Exception.

Arithmetic Exception Constructor
1. ArithmeticException(): It is used to define an arithmetic exception with zero parameters

passed.
2. ArithmeticException(String s): It is used to define an arithmetic exception with one

parameter passed.

Arithmetic Exception Occurrence:
The following are two situations where the arithmetic exception may occur.

1. When we perform a division where 0 is used as a divisor, i.e., 0 comes as the denominator.
2. A long decimal number that is non-terminating by Big Decimal.

Java instanceof operator
The java 'instanceof' operator is used to test whether an object is an instance of a specified type

(class or sub - class or visual interface).

'instanceof' in Java is also known as the type comparison operator because it compares the

instances with type. It returns true or false. If we apply the 'instanceof' operator with a variable

value, the value returned is false.

Example of Java instanceof Operator
Let's look at a simple example of instanceof operator where it checks the current class.

student.java

1. {
2. public static void main(String args[])
3. {
4. // declaring an object 's' of the student class
5. student s = new student() ;
6. // checking whether s is an instance of the student class using instanceof operator

7. Boolean str = s instanceof student;
8. // printing the string value
9. System.out.println(str) ;
10. }
11. }

Output: True

Throwing Exception:
In Java, exceptions allow us to write good quality codes where the errors are checked at the

compile time instead of runtime and we can create custom exceptions making the code recovery

and debugging easier.

Java throw keyword
The Java throw keyword is used to throw an exception explicitly.

We specify the exception object which is to be thrown. The Exception has some message with it

that provides the error description. These exceptions may be related to user inputs, server, etc.

We can throw either checked or unchecked exceptions in Java by throw keyword. It is mainly

used to throw a custom exception. We will discuss custom exceptions later in this section.

We can also define our own set of conditions and throw an exception explicitly using throw

keyword. For example, we can throw ArithmeticException if we divide a number by another

number. Here, we just need to set the condition and throw exception using throw keyword.

The syntax of the Java throw keyword is given below.

throw Instance i.e.,

throw new exception_class("error message");

Let's see the example of throw IOException.

throw new IOException("sorry device error");

User-defined Exception:

An exception is an issue (run time error) that occurred during the execution of a program. When

an exception occurred the program gets terminated abruptly and, the code past the line that

generated the exception never gets executed.

Java provides us the facility to create our own exceptions which are basically derived classes of

Exception. Creating our own Exception is known as a custom exception or user-defined

exception. Basically, Java custom exceptions are used to customize the exception according to

user needs. In simple words, we can say that a User-Defined Exception or custom exception is

creating your own exception class and throwing that exception using the ‘throw’ keyword.

For example, MyException in the below code extends the Exception class.

Uses of user defined exceptions:

Java exceptions cover almost all the general types of exceptions that may occur in the

programming. However, we sometimes need to create custom exceptions.

Following is a few of the reasons to use custom exceptions:

➢ To catch and provide specific treatment to a subset of existing Java exceptions.

➢ Business logic exceptions: These are the exceptions related to business logic and workflow. It

is useful for the application users or the developers to understand the exact problem.

In order to create a custom exception, we need to extend the Exception class that belongs to

java.lang package.

Example: We pass the string to the constructor of the superclass- Exception which is obtained

using the “getMessage()” function on the object created.

// A Class that represents use-defined exception

class MyException extends Exception {
 public MyException(String s)
 {
 // Call constructor of parent Exception
 super(s);
 }
}

// A Class that uses above MyException
public class Main {
 // Driver Program
 public static void main(String args[])
 {
 try {
 // Throw an object of user defined exception
 throw new MyException("GeeksGeeks");
 }
 catch (MyException ex) {
 System.out.println("Caught");

 // Print the message from MyException object
 System.out.println(ex.getMessage());
 }
 }
}

Java Applet:
Applet is a special type of program that is embedded in the webpage to generate the dynamic

content. It runs inside the browser and works at client side.

Advantage of Applet
There are many advantages of applet. They are as follows:

➢ It works at client side so less response time.
➢ Secured
➢ It can be executed by browsers running under many plateforms, including Linux, Windows,

Mac Os etc.

Drawback of Applet

➢ Plugin is required at client browser to execute applet.

How to run an Applet:
There are two ways to run an applet

1. By html file.
2. By appletViewer tool (for testing purpose).

Applet Life Cycle:
The applet life cycle can be defined as the process of how the object is created, started, stopped,

and destroyed during the entire execution of its application. It basically has five core methods

namely init(), start(), stop(), paint() and destroy().These methods are invoked by the browser to

execute.

Along with the browser, the applet also works on the client side, thus having less processing time.

Methods of Applet Life Cycle:
There are five methods of an applet life cycle, and they are:

• init(): The init() method is the first method to run that initializes the applet. It can be invoked
only once at the time of initialization. The web browser creates the initialized objects, i.e.,
the web browser (after checking the security settings) runs the init() method within the
applet.

• start(): The start() method contains the actual code of the applet and starts the applet. It is
invoked immediately after the init() method is invoked. Every time the browser is loaded or
refreshed, the start() method is invoked. It is also invoked whenever the applet is maximized,
restored, or moving from one tab to another in the browser. It is in an inactive state until the
init() method is invoked.

• stop(): The stop() method stops the execution of the applet. The stop () method is invoked
whenever the applet is stopped, minimized, or moving from one tab to another in the
browser, the stop() method is invoked. When we go back to that page, the start() method is
invoked again.

• destroy(): The destroy() method destroys the applet after its work is done. It is invoked when
the applet window is closed or when the tab containing the webpage is closed. It removes
the applet object from memory and is executed only once. We cannot start the applet once
it is destroyed.

• paint(): The paint() method belongs to the Graphics class in Java. It is used to draw shapes
like circle, square, trapezium, etc., in the applet. It is executed after the start() method and
when the browser or applet windows are resized.

Sequence of method execution when an applet is executed:

1. init()
2. start()
3. paint()

Sequence of method execution when an applet is executed:

4. stop()
5. destroy()

Applet Life Cycle Working:
➢ The Java plug-in software is responsible for managing the life cycle of an applet.
➢ An applet is a Java application executed in any web browser and works on the client-side. It

doesn't have the main() method because it runs in the browser. It is thus created to be placed
on an HTML page.

➢ The init(), start(), stop() and destroy() methods belongs to the applet.Applet class.
➢ The paint() method belongs to the awt.Component class.
➢ In Java, if we want to make a class an Applet class, we need to extend the Applet
➢ Whenever we create an applet, we are creating the instance of the existing Applet class. And

thus, we can use all the methods of that class.

Applet Viewer:

It is a java application that allows you to view applets. It’s similar to a mini-browser that will

enable you to see how an applet might appear in a browser. It recognizes the APPLET tag

and uses it during the creation process. The APPLET tag should be written in the source

code file, with comments around it.

➢ Write HTML APPLET tag in comments in the source file.

➢ Compile the applet source code using javac.

➢ Use applet viewer ClassName.class to view the applet.

// Java program to run the applet
// using the applet viewer

import java.awt.*;
import java.applet.*;
public class GfgApplet extends Applet
{
 String msg="";
 public void init()
 {
 msg="Hello Geeks";
 }

 public void start()
 {
 msg=msg+",Welcome to GeeksForGeeks";
 }

 public void paint(Graphics g)
 {

 g.drawString(msg,20,20);
 }

}
/*
<applet code="GfgApplet" width=300 height=100>
</applet>
*/

To use the applet viewer utility to run the applet, type the following at the command

prompt:

c:\>javac GfgApplet.java

c:\>appletviewer GfgApplet.java

Graphics in Java:

Graphics is an abstract class provided by Java AWT which is used to draw or paint on the

components. It consists of various fields which hold information like components to be painted,

font, color, XOR mode, etc., and methods that allow drawing various shapes on the GUI

components. Graphics is an abstract class and thus cannot be initialized directly. Objects of its

child classes can be obtained in the following two ways.

Graphics APIs

Swing, AWT (Abstract Window Toolkit), and Graphics run on top of the JVM (Java Virtual

Machine), along with other Java libraries. This core trio is responsible for creating windows, user

interface components, and graphics and painting them on a computer screen in such a manner

that the user applications do not get a hint of window system APIs of the underlying native

platform.

Abstract Window Toolkit (AWT)

Java’s first full-fledged GUI library was used to create GUI components for user interface

programming. AWT closely works with the native libraries of the underlying platform to create

and display graphical components. The library is quite heavy due to coercing with the native API

library and inflexible due to compromising Java’s philosophy of least native API influence.

Swing

Swing is lightweight because the GUI components in Swing do not correspond to the native

components as they do it in AWT. They are drawn using Graphics from scratch; therefore, an

interesting aspect of the Swing GUI is that they can be further extended and customized in several

interesting ways. The customized look and feel we find in Swing is this simple example of its

flexibility.

Java Color:
Java programming language allows us to create different types of applications like windows

application or web application. The user interface is an important factor while developing an

application. The GUI of the Java application can be made interactive using different colors

available in Java programming.

Java Color Constants
The color constants in Java are values that cannot be changed and can be used with different

Java programs.

The following table shows the color constants available in the Java programming. The all-capital

version depicts a constant value. But lowercase version also works fine.

The basic colors of color system are red, green, and blue. Java provides the Color class constructor

with different RGB color codes as arguments. Many developer tools are available that helps in

picking up the correct RGB value.

The following table shows some color code combinations using different RGB values.

Color RGB value

Black 0-0-0

Very light red 255-102-102

Light red 255-51-51

Red 255-0-0

Dark red 204-0-0

Very dark red 153-0-0

Very light blue 51-204-255

Light blue 51-153-255

Blue 0-0-255

Dark blue 0-0-204

Very dark blue 0-0-153

Very light green 102-255-102

Light green 0-255-51

Green 0-204-0

Dark green 0-153-0

Very dark green 0-102-0

White 255-255-255

Java Font:

In Java, Font is a class that belongs to the java.awt package. It implements the Serializable

interface. FontUIResource is the direct known subclass of the Java Font class.

It represents the font that are used to render the text. In Java, there are two technical terms that

are used to represent font are characters and Glyphs.

Types of Fonts in Java

There are two types of fonts in Java:

1. Physical Fonts

2. Logical Fonts

1. Physical Fonts

Physical fonts are actual Java font library. It contains tables that maps character sequence to

glyph sequences by using the font technology such as TrueType Fonts (TTF) and PostScript Type

1 Font. Note that all implementation of Java must support TTF. Using other font technologies is

implementation dependent. Physical font includes the name such as Helvetica, Palatino,

HonMincho, other font names.

The property of the physical font is that it uses the limited set of writing systems such as Latin

characters or only Japanese and Basic Latin characters. It may vary as to configuration changes.

If any application requires a specific font, user can bundle and instantiate that font by using the

createFont() method of the Java Font class.

2. Logical Fonts

Java defines five logical font families that are Serif, SansSerif, Monospaced, Dialog, and

DialogInput. It must be supported by the JRE. Note that JRE maps the logical font names to

physical font because these are not the actual font libraries. Usually, mapping implementation is

locale dependent. Each logical font name map to several physical fonts in order to cover a large

range of characters.

For example, AWT components such as Label and TextField uses logical fonts only.

Font Faces and Names

A font may have many faces such as heavy, regular, medium, oblique, gothic, etc. All font faces

have the similar typograph design.

A Font object have three different names that are:

Logical font name: It is the name that is used to construct the font.

Font face name: It is the name of particular font face. For example, Helvetica Bold.

Family name: It is the name of the font family. It determines the typograph design among several

faces.

The Java Font class represents an instance of a font face from a collection of font faces that are

present in the system resources of the host system. Example of font faces are Arial Bold, Courier

Bold Italic, etc. A font face (each differing in size, style, transform and font feature) may associate

with several Font objects.

	Types of Java Exceptions
	1. Checked Exception
	2. Unchecked Exception
	3. Error
	Java Exception Keywords:
	Java Exception Handling Example
	Arithmetic Exception:
	Arithmetic Exception Structure
	Arithmetic Exception Constructor

	Arithmetic Exception Occurrence:

	Java instanceof operator
	Example of Java instanceof Operator

	Throwing Exception:
	Java throw keyword

	Java Applet:
	Advantage of Applet
	Drawback of Applet
	How to run an Applet:

	Applet Life Cycle:
	Methods of Applet Life Cycle:
	Applet Life Cycle Working:

	Java Color:
	Java Color Constants

